

Modeling of the Flow Comparator as Calibration Device for High Pressure Natural Gas Flow Metering in Modelica

Sukhwinder Singh, Gerhard Schmitz, Bodo Mickan

Institute for Engineering Thermodynamics Hamburg University of Technology

26.06.2019, Lissabon

Modeling of the Flow Comparator in Modelica

Assumptions:

- One dimensional gas flow
- The gas flow is adiabatic
- Potential energy of the gas and heat transfer in the gas is neglected
- Pressure losses are proportional to the dynamic pressure

System **Boundary Conditions: 1**edium $p_{inlet} = const.$ Control Voltage Volume T = const.۲ Volume 1 Volume 2 Piston **Operating Point:** Inlet pressure: 1 bar ۲ Linear induction motor Check Valve Inlet temperature: 20 °C ۲ \mathbb{N} Volume flow: $50 \text{ m}^3/\text{h} - 150 \text{ m}^3/\text{h}$ ۲ Leakage Pipe 2 TM Pipe 1 26.06.2019 Modeling of the Flow Comparator in Modelica 6

- One dimensional flow
- Volume depends on the piston's position
- Finite volume method for spatial discretization
- Heat transfer between piston and volume
- Storage for mass, energy and momentum

- Uses sliding mass model from MSL
- Friction force includes
 - Piston weight
 - Connection cable weight

$$m_{P}\ddot{s}_{P} = p_{1}A_{P} - p_{2}A_{P} - F_{F,P} + F_{LM}$$

if $F_{F,P} > |p_{1}A_{P} - p_{2}A_{P}| + |F_{LM}|$ then $v_{P} = 0$
 $F_{F,P} = c_{R}gm_{P} + gm_{C}\frac{s}{l}$

- Similar space-vector equivalent circuit to rotatory induction motor
- Transversal branch with eddy current resistance and magnetizing inductance
 - Vary with $f(Q) = \frac{1 e^{-Q}}{Q}$ depending on the end effect factor $Q = \frac{\tau_m R_r}{(L_m + L_{\sigma r})v}$
 - End effect factor depends on air-gap thickness, machine speed and inductor length

Modeling of the Flow Comparator in Modelica

Optimization for maximum calibration time

- Calibration of TM when differential pressure at piston within set limits
- Excessive increase of control voltage at the start
- Optimization parameters
 - Max. control voltage
 - Time at max. control voltage
 - Min. control voltage
 - Increase of control voltage during calibration

Piston velocity

- Piston velocity earlier equal to air flow velocity ۲
- Piston velocity remains constant ۲
- Zero differential pressure at the piston for long period ۲

Modeling of the Flow Comparator in Modelica

Summary

- Validation of Flow Comparator Model
- Optimization of control voltage for maximum calibration time

 \rightarrow lasting zero differential pressure at piston and an increase of available calibration time

Outlook

- Implementation of heat transfer in all models
- More detailed optimization of control voltage trajectory
 - Friction force measurement with high accuracy needed
 - Leakage flow needs to be resolved with higher resolution

Thank you for your attention!

Sukhwinder Singh Institute for Engineering Thermodynamics Hamburg University of Technology Phone: ++49 (40) 42878-2676 Mail: sukhwinder.singh@tuhh.de

Modeling of the Flow Comparator in Modelica

26.06.2019

Backup

Sukhwinder Singh Institute for Engineering Thermodynamics Hamburg University of Technology Phone: ++49 (40) 42878-2676 Mail: sukhwinder.singh@tuhh.de

Modeling of the Flow Comparator in Modelica

26.06.2019

- Constant pressure drop coefficient
- Relationship between indicated volume flow rate and real volume flow rate
- Coefficients a, b, A and B based on experiments

 $\dot{V}_{i,rel} - (a + bV_{i,rel}) = A\rho V^2 - B\rho V V_i$

Modeling of the Flow Comparator in Modelica

- 3700 bln. m³ natural gas production worldwide in 2017
- Natural Gas is traded between many countries worldwide

Source: BP Statistical Review of World Energy 2018

